teg Kafka的使用场景

葫芦的运维日志

下一篇 搜索 上一篇

浏览量 4533

2019/07/16 00:50


下面是一些关于Apache kafka 流行的使用场景。这些领域的概述,可查看博客文章

消息

kafka更好的替换传统的消息系统,消息系统被用于各种场景(解耦数据生产者,缓存未处理的消息,等),与大多数消息系统比较,kafka有更好的吞吐量,内置分区,副本和故障转移,这有利于处理大规模的消息。

根据我们的经验,消息往往用于较低的吞吐量,但需要低的端到端延迟,并需要提供强大的耐用性的保证。

在这一领域的kafka比得上传统的消息系统,如的ActiveMQRabbitMQ的。

网站活动追踪

kafka原本的使用场景:用户的活动追踪,网站的活动(网页游览,搜索或其他用户的操作信息)发布到不同的话题中心,这些消息可实时处理,实时监测,也可加载到Hadoop或离线处理数据仓库。

每个用户页面视图都会产生非常高的量。

指标

kafka也常常用于监测数据。分布式应用程序生成的统计数据集中聚合。

日志聚合

许多人使用Kafka作为日志聚合解决方案的替代品。日志聚合通常从服务器中收集物理日志文件,并将它们放在中央位置(可能是文件服务器或HDFS)进行处理。Kafka抽象出文件的细节,并将日志或事件数据更清晰地抽象为消息流。这允许更低延迟的处理并更容易支持多个数据源和分布式数据消费。

流处理

kafka中消息处理一般包含多个阶段。其中原始输入数据是从kafka主题消费的,然后汇总,丰富,或者以其他的方式处理转化为新主题,例如,一个推荐新闻文章,文章内容可能从“articles”主题获取;然后进一步处理内容,得到一个处理后的新内容,最后推荐给用户。这种处理是基于单个主题的实时数据流。从0.10.0.0开始,轻量,但功能强大的流处理,就可以这样进行数据处理了。

除了Kafka Streams,还有Apache Storm和Apache Samza可选择。

事件采集

事件采集是一种应用程序的设计风格,其中状态的变化根据时间的顺序记录下来,kafka支持这种非常大的存储日志数据的场景。

提交日志

kafka可以作为一种分布式的外部日志,可帮助节点之间复制数据,并作为失败的节点来恢复数据重新同步,kafka的日志压缩功能很好的支持这种用法,这种用法类似于Apacha BookKeeper项目。

本文转自:半兽人

葫芦的运维日志

打赏

上一篇 搜索 下一篇
© 冰糖葫芦甜(bthlt.com) 2021 王梓打赏联系方式 陕ICP备17005322号-1